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Abstract—A model for the dynamic behavior of a laminated composite shallow arch is developed
from shallow shell theory. Linear equations of motion are derived for thin, moderately thick and
thick arches. Free vibration of the arch is explored and exact natural frequencies of the third-order,
second-order, first-order and classical arch theories are determined for various boundary conditions.
A generalized modal approach is presented to solve the dynamic response of cross-ply laminated
arches with arbitrary boundary conditions and for arbitrary loadings. The Poisson effect and rotary
inertia are incorporated in the formulation of the arch constitutive equation, in the analytical
approaches and in the numerical results. © 1997 Elsevier Science Ltd. All rights reserved.

INTRODUCTION

Modern fiber reinforced-composites have been the subject of intense research in the last
decade. They can be used in high performance fields, such as military aircraft and space
structures. Curved panels are an important structural element of many composite
components, which can be modeled as rings or arches. These components frequently are
subject to their greatest stresses at dynamic, rather than static loads. This paper addresses
the dynamic behavior of cross-ply laminated composite slightly curved beams or shallow
arches.

Survey studies on the vibration analysis of arch-type structures had been compiled in
(Markus and Nanasi (1981), Laura and Maurizi (1987)). Most of the research deals with
isotropic arches. Very few deal with composite sandwich curved beams of three-layers. The
finite element method was used by Ahmed (1971), (1972) to study the dynamic response of
sandwich curved beams and the effects of shear deformation and rotary inertia on natural
frequencies was also investigated. Free and forced vibrations of a three-layered ring were
analyzed (DiTaranto (1973), Sagartz (1977)). Hamilton’s principle was used to derive the
equations of motion. In DiTaranto (1973), analytical expressions were obtained for the
response and for the natural frequencies of the ring having an elastic core material, while
in Sagartz (1977), a computational technique was developed for transient response evalu-
ation and a companion experimental study was conducted. The dynamic stiffness matrix
formulation for curved members of constant section was presented for determining natural
frequencies of continuous curved beams undergoing in-plane vibrations (Wang and Guil-
bert (1981), Issa ez al. (1987)). In Wang and Issa (1987), the method was extended to forced
vibrations of continuous curved beams. An analysis of the vibration of transversely isotropic
beams, which have small constant initial curvature was presented in (Rossettos (1971),
Rossettos and Squires (1973)). A closed-form general solution to the governing equations
was derived. Natural modes and frequencies were determined for both clamped and simply
supported end conditions. Closed-form steady-state solutions were presented by Bellow
and Semeniuk (1972) for in-plane excitation of thin circular arches subjected to cyclic
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symmetric and unsymmeiric support movement. Arches with pinned-end and clamped-end
boundary conditions were considered, The steady-state solutions consist of a series of the
free modes of vibration. Natural frequencies of in-plane and out-of-plane vibration based
on the Timoshenko beam theory were calculated numerically by (Irie ez al. (1983), (1982))
for uniform arcs of circular cross-section under all combination of boundary conditions.

Recently, theoretical and experimental works had been conducted to investigate the
free and forced vibration of laminated arches. Scrivener (1989) developed a model for the
dynamic response of a laminated composite arch from classical shell theory. Several
methods of solution were explored, namely the Laplace transformation, the method of
particular solution and the eigensolution. The free vibration of the arch was explored and
the natural frequencies of the system were determined. The response of the arch to general
forcing functions was also considered, by the use of the Fourier transformation technique.
Damping through material viscoelasticity and use of the model in evaluation of experimental
data were also discussed. Experiments were conducted by (Collins and Johnson (1992}) to
measure the three-dimensional static and vibratory response to two-graphite—epoxy, thin
walled, open section semi circular frames. The experimental data was used to evaluate a
mixed finite element model of the frames that is based on Vlasov-type, thin walled, open
section curved beam theory. Most recently a consistent set of equations was derived by
(Qatu (1992), (1993)) for the analysis of laminated composite curved beams and closed
rings. Equations were developed for thin (Qatu (1992)) and moderately thick curved beams
(Qatu (1993)), using the classical and first-order theories, respectively. Natural frequencies
for simply supported curved beams were obtained by exact solutions. The Ritz method with
algebraic polynomials was used to obtain approximate solutions for arbitrary boundary
conditions.

In this paper, an analysis of the vibration of slightly curved cross-ply laminated
composite beams is presented. Hamilton’s principle is used to derive the equations of
motions of four theories. Exact natural frequencies are determined for various end con-
ditions using the state space concept. The combined effects of initial curvature, transverse
shear deformation, orthotropicity ratio, stacking sequence and boundary conditions are
evaluated and discussed. The dynamic response of the arch to general forcing functions
and for arbitrary end conditions is also considered. A generalized modal approach in
conjunction with the biorthogonality conditions of the principal modes with respect to the
eigenfunctions of the original and adjoint equations, is presented.

EQUATIONS OF MOTION

The equations of laminated shallow shell, Reddy and Liu (1985), theory are reduced
to laminated shallow arch by assuming that there is no variation in the y-direction. This
requires that all terms containing partial derivative with respect to y equal to zero. Accord-
ingly the displacement field of a laminated shallow arch will be presented as :

Ux,z,t) = <1 + i)u(x, t) +z|:50 a_w +9,¢d(x, t)}+z2 S (x, )+ 2% 85 [d)(x, N+ Q}
R ax ox

Vix,z,t) =0
Wi(x,z,t) = w(x, 1) (1)

where U, V and W are the generalized displacements along the x, y and z coordinates,
respectively. u, w are the displacements of the arch middle surface in the x and z directions
respectively. R is the radius of curvature. ¢ and i are displacement component functions.
The displacement field in (1) contains as special cases, the displacement fields of the classical
arch theory (CAT), (0o = —1,0, = §, = ; = 0), the first-order shear deformation arch
theory (FOAT), (6, = 0, = 6, = 0,6, = 1), the second-order shear deformation arch theory
(SOAT), (8, =96:=0,0, =5, =1) and the third-order shear deformation arch theory
(HOAT), (6o = 6,=0,8, = 1,6, = —4/(34)). Here, h is the total thickness of the arch.
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The displacement field of the third-order arch theory provides a parabolic variation of the
transverse shear stress with the condition to be zero at the top and bottom surfaces of the
arch.

The strain—displacement relations are given by :

e =¢® +ZS(” +Z28(2) -}-238(3)

= O 4 2y 4229 ?)
where
ou w o*w ¢
0 _ SAME{ ) N 5
g 6x+ R’ £ o e +4, P
a 0g | Ow

@ _ 3

¢ 52 ox’ ¢ 53 <5x T Ox> ’

V‘0)=(1+5 )@+5¢ y(1)=75l// })(2)23(5 ¢+@f (3)

ax UMY R } ox /)

The stress—strain relations for the k-th lamina in the laminate coordinate can be written
as:

o = QRe
@ = Q¢ )
where 0 and Q%! are the elastic stiffnesses transformed to the x direction.

Hamilton principle will be used to derive the equations of motion with the associated
boundary conditions for the displacement field (1) and constitutive equations (4), we have

0= .f U (e® se+1® y)dA dx—J p®(USU+ W W) dv

0 v

- f 1 Ffx, 1) 6w dx]dt (5)

where f{(x, ) is the distributed transverse load per unit length.
Introducing the following definition of stress resultants

(N,M,L,P) = J o®(1,z,2%,2°)dA

A

9, 1,8) = J ®(1,z,z*) dA. (6)

A

The Euler-Lagrange equations of motion of the shallow arch associated with the
displacement field in eqn (1) are:

ON _ . . O
g=11u+12¢+13'//+14é;
oM oP _ D . - OW
51§+5sa—51Q—353S=Izﬁ+15¢+16¢+175;
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with the following associated boundary conditions
Natural B.C. Essential B.C.
N u
o, M+6;P ¢
0,L 1/
doM + 6P ow/ox
(1400)Q+36.5 (®)
5 oM cP
% 0x TPox
+ L+ Lo+ Ly
I ow ‘
+ 98x w
The inertias are defined by the equations
Il = I] +2E,
- I I
12 = 61(13+'1%>+53(I4+if>,
- I
]3 = 52(I3+;j‘>,
_ I I
Iy = 50(124‘;?)4-53(144-}?),
[_5 = 5%[3 +26] 5315 +5%I7,
I =90, 0,1,+0, 051,
1_7 = 000113 +0 0315 +3, 0515 +5§17,
Iy = 006,14, +6, 0,1,
1_9 = 5(2)13 +2‘50 53]54‘5%17,
L=bY% r pPzVdz (i=1,2,...,7). (9)
k=1Jz
The resultants are related to the total strains by
(0)
N A B D E &
11 11 11 11 " 0 A Bss Dss }'(0)
M By, Dy E, Fy ¢ 1
= , {T{=|Bss Dss Ess|{7") (10)
L , Dll Ell Fll Gll 8(2)
J S Dss Ess  Fss 11y®
P E, F, G, H, g®

where
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n ZJ\
(4,1, By1,D\,E\\,F,,G,,H,,) = b Z J‘ (lkl](l»z’zz,ZS,Z4aZSaZﬁ)dz
k=1

Thew 1

(Ass5,Bss,Dss, Ess, Fss) = b Z .[ | Q(5k5)(1,2’22723,24) dz. (11)

k=1)z,

ANALYTICAL FORMULATION

A generalized modal approach (see, e.g., Singh and Abdelnaser (1992), Khdeir (1994),
(1995a, b, ¢), (1996)) will be derived to solve the equations of motion of laminated composite
arch for all boundary conditions. According to this approach, we write eqn (7) in the
following form of the four theories :

HOAT
W =W s+ W+ WA madi+myd
O = caW FCsh+ oW+ mW +msii+ mep
W = oW g W Cott A ¢ o+ MW+ mg W +moti’ +my o+ cof (12)
SOAT
U = cld)+c21p+c3w’+m1ii+m2(i)'+m3lﬁ
Q" = c4q5+csl,b+cﬁw'+m4u‘+msq'5+m(,lﬁ
V' = i e+ cow’ + i+ my g+ myy
W' =cigwtopu +ep@ o Fmpggwtcf (13)
FOAT
W =W+ +mii+mg
¢" = c;w'-l—c4¢+m3ii+m4g5
W' = csWH gl 070" +mswHcof (14)
CAT

u' =Wt W +my i+ m W

W = cawtcaw +osu’ Fma W+ m W +msii + e f (15)

where a prime and dots on a quantity denote the derivative with respect to x and ¢,

respectively. The coefficients in eqns (12), (13), (14) and (15) are presented in Appendix A.
Introducing the following state variables

HOAT

) _ N — e N — S N _ — N — S N _ 4 _ 4
yi=w, o ya=w, o yi=w, o yi=u ys=¢, yo=w" yr=u, ys=2¢

(16)

Yi=w, Ya=u, yi=6¢, ya=y, vs=w, ye=u, y;=¢", ys=y" (17
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FOAT

Yi=w, =, yi=¢, ya=w, ps=u, yo=¢ (18)

CAT

’

yi=w, ya=w, yy=w, pa=u ys=w', ye=u. (19)

Equations (12), (13), (14) and (15) in conjunction with (16), (17), (18) and (19) can
be combined into a system of first-order equations as:

{7} = M7} + K]y} + {F}- (20)

The nonzero elements of the matrices [M] and [K] are presented in Appendix B.
The load vector {F} is defined as

{F\" = {0,0,0,0,0,¢,/,0,0} for HOAT 1)
(F\T = {0,0,0,0,¢,£,0,0,0} for SOAT (22)
(FI" = {0,0,0,¢,/,0,0} for FOAT (23)
{F}T =1{0,0,0,0,¢,£,0} for CAT. (24)

The state vector {y} will be separated into time and spatial coordinates to solve for
the free vibration problem (see, e.g., Khdeir and Reddy (1994), (1990))

= {Y(0)}q®. (25)

To obtain the frequencies and the corresponding eigenfunctions, the generalized coordinate
q(#) will be represented as:

q(r) =" (26)
and the eigenfunctions { Y} must satisfy the following equation
{Y'} = [DI{Y} 27)

where

[D] = [K]—w’[M]. (28)

The formal solution to eqn (27) is given by :

(¥} =1[C] @ 29)

where
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= 1C1 " {n} (30)

where n = 8 for HOAT and SOAT and n = 6 for FOAT and CAT, 4, are the distinct
eigenvalues of matrix [D] while [C] denotes the matrix of eigenvectors of [D].

Substitution of (29) into the desired boundary conditions associated with the edges
x = + L/2 results in a set of homogeneous algebraic equations of the form

[BICY ' {n} = {0}. 31
For nontrivial solution of eqn (31), the determinant must be zero
|B|/|C| = 0. (32)

Equations (32) and (29) give the frequencies and the corresponding eigenfunctions, respec-
tively. There are infinite frequencies and the eigenfunctions form a complete set, and eqn
(25) will be expressed as:

D

x 0} = ¥ A{Yu()}ga(0). (33)

m=1

The boundary conditions for hinged (H) and clamped (C) at the edges x = + L/2 are:
HOAT

Hw=N=M=P=0

_6‘4}_

C:uquzw—E;—O (34)
SOAT
Hw=N=M=L=0
Cu=w=¢=y=0 (35)
FOAT
Hw=N=M=0
Ciu=¢=w=0 (36)
CAT

Hw=N=M=0

a y
Ciu=w=2=0. 37)
ox

Equation (20) is not a self adjoint equation and the eigenfunctions do not form an
orthogonal set, therefore we must obtain the eigenfunction of the adjoint of eqn (27) in
order to decouple eqn (20). Nayfeh (1981) showed that the adjoint of eqn (27) is

{z'} = -0z} (38)

with the boundary conditions defined according to the following equation
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(Z}){y} | =0 (39)

—1i2

According to egn (39) the following boundary conditions will be defined at the edges
x=+1/2:

HOAT
H:ZZ=Z4=ZSZZ(,:
C:Z,=Z=2,=2Z5=0 (40)
SOAT
H:22:Z3 =Z4:ZSZO
C:ZS=Z6=Z7:ZSZO (4])
FOAT
H:Z,=Zy=7,=0
C:Z4 =ZS :Z() =0 (42)
CAT

H:ZQZZ4=Z5=O
C:iZy=25=2Z¢=0. (43)

The solution to eqn (38) is

e M 0

{z} =H '"_. {k} (44)

where [H] denotes the matrix of eigenvectors of —[D]’.

Substitution of eqn (44) into the corresponding boundary conditions defined in eqns
(40)—(43) at the edge x = + L/2 results in a set of homogeneous algebraic equations of the
form

[E]{k} = {0} (45)

We solve for the eigenvector {k} associated with frequency w.

To solve for the dynamic response, we substitute eqn (33) in eqn (20), premultiplying
by the adjoint eigenfunction {Z]7, integrating over the domain and using the following
biorthogonality conditions of modes with respect to the eigenfunctions {Y,,} and {Z,},
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- f 2 TIMI Y, dx = M6, 46)
—12
J C{ZTEY) —KI{Y)) dx = 0l M, 6, (47)
—12
we obtain
G (D) + 0p g (1) = Vi { {Zn} T{F} dx. (48)
m )12

For zero initial conditions, the state vector {y} will be expressed as

o0

] t 12
Dm0} = 3 (v, j h(1—2) J (Z)T{EE ) dede )

m=1Mp 0 i

where A,,(t — 1) 1s the impulse response function.

NUMERICAL RESULTS AND DISCUSSION

Exact solution for the fundamental frequencies of symmetric and antisymmetric cross-
ply laminated arches has been tabulated in Tables 1, 2, 4 and 5 for various end conditions.
In Table 3, frequencies for various modes has been obtained. All of the laminae are assumed
to be of the same thickness, density and made of the same orthotropic material properties.
The following dimensionless orthotropic material properties are used in the free vibration
analysis:

E1 = 40E2, GIQ = G13 = 0.6E2, G23 = O.SEz, Via = 0.25.

A value of 5/6 is used for the shear correction coefficient of FOAT. The frequencies are
nondimensionalised as:

_ fol’\ [ p

=\ NE

where L is the length of the arch and p is the density. Frequencies are determined for
hinged-hinged, hinged—clamped and clamped—clamped end conditions. The state space
concept has been used to obtain these frequencies. This approach is proved to be efficient,
powerful and has no limitations and can be applied to thick, moderately thick and thin
laminated arches (see Table 1), using different shearing deformation theories. In Table 1,
fundamental frequencies for different values of length of thickness ratios have been dis-
played for all theories to show the effect of shear deformation. This effect is more pro-
nounced in symmetric cross-ply laminates as well as in clamped boundary conditions. For
L/h = 50, close results of the fundamental frequency have been achieved by the classical
and shearing deformation theories. For this ratio and above, the design engineer can use
the classical theory for his analytical computation. Increasing the number of layers for the
same thickness will increase the fundamental frequency for antisymmetric cross-ply schemes
(see Table 2). As displayed in Table 4, for all boundary conditions, increasing orthotropicity
ratio will result in an increase in the dimensionless fundamental frequency for symmetric
and antisymmetric laminates. For hinged arches, the initial curvature has a correspondingly
smaller influence on the results (Table 5) where for clamped arches the influence is more
pronounced.
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Table 1. (a) Dimensionless fundamental frequencies, @, for thick,
moderately thick and thin antisymmetric cross-ply (0/90) arches

(RIL=5)
L/h Theory H-H H-C C-C
S HOAT 6.156 8.047 10.751
SOAT 5.893 7.392 9.768
FOAT 5979 7.462 9.799
CAT 7.174 11.127 16.489
10 HOAT 6.961 10.121 15.667
SOAT 6.863 9.780 15.078
FOAT 6.898 9.862 15.201
CAT 7.288 11.341 18.084
50 HOAT 7.294 11.324 40.282
SOAT 7.290 11.305 40.250
FOAT 7.292 11.312 40.261
CAT 7.310 11.385 40.380
100 HOAT 7.303 11.367 45.441
SOAT 7.302 11.363 45362
FOAT 7.303 11.364 45,389
CAT 7.307 11.383 45.685

Table 1. (b) Dimensionless fundamental frequencies, @, for thick,
moderately thick and thin symmetric cross-ply (0/90/0) arches

(R/IL =15)

Lih Theory H-H H-C C-C
5 HOAT 9.190 10.181 12.433
SOAT 9.798 10.350 12.266

FOAT 9.187 9.592 11.421
CAT 17.387 26.933 39.558
10 HOAT 13.586 16.505 21.670
SOAT 14.121 17.187 22.382

FOAT 13.642 16.240 21.151
CAT 17.597 27.381 40.839
50 HOAT 17.427 26.535 57.370
SOAT 17.472 26.703 57.615
FOAT 17.433 26.548 57.400

CAT 17.666 27.520 58.811
100 HOAT 17.608 27.266 93.363
SOAT 17.619 27.310 93.431
FOAT 17.609 27.271 93.369
CAT 17.668 27.524 93.739

Table 2. Variation of dimensionless fundamental frequency, @, of
cross-ply laminated arches with the number of layers (NL),
L/h=10,R/IL =75

NL Theory H-H H-C C-C
2 HOAT 6.961 10.121 15.667

CAT 7.288 11.341 18.084

3 HOAT 13.586 16.505 21.670

CAT 17.597 27.381 40.839

4 HOAT 10.212 13.447 18.540

CAT 11.712 18.227 27.560

10 HOAT 10.880 14.154 19.240
CAT 12.667 19.713 29.679

The generalized modal approach, utilizing the state form of the equations and their
biorthogonality eigenfunctions, is used to evaluate the dynamic response of arches with
different boundary conditions, subjected to arbitrary loading. The numerical applications,
are carried out for the case of symmetric and antisymmetric cross-ply laminated shallow
arches, whose geometrical and material properties are the same as the one used in the free



Table 4. Variation of dimensionless fundamental frequency, @, of cross-ply lami-
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Table 3. Dimensionless frequencies, @, for various modes of cross-
ply laminated arches using HOAT, L/A =10, R/L =5

Lamination m H-H H-C C-C

0/90 1 6.961 10.121 15.667
2 24.580 28.457 32.203
3 47.635 51.274 54.949

0/90/0 1 13.586 16.505 21.670
2 36.815 38.895 40.898
3 60.855 63.039 65.562

nated arches with orthotropicity ratio (E,/£,), L/h =10, R/L = 5

Lamination E/E, Theory H-H H-C C-C
0/90 2  HOAT 3.337 5.087 7.519
CAT 3.378 5.257 7.926

15 HOAT 5.112 7.635 11.604

CAT 5.248 8.166 12.751

50 HOAT 7.537 10.856 16.868

CAT 7.952 12.373 19.805

0/90/0 2  HOAT 3.960 5.986 8.714
CAT 4.031 6.273 9.399

15 HOAT 9.635 12.948 17.356

CAT 10.799 16.803 25.072

50  HOAT 14.479 17.215 22.673

CAT 19.669 30.605 45.646

Table 5. (a) Effect of shallowness of antisymmetric cross-ply (0/90)
laminated arch on the dimensionless fundamental frequency, @,

Lih=10

R/L Theory H-H H-C cC
S HOAT 6.961 10.121 15.667
SOAT 6.863 9.780 15.078

FOAT 6.898 9.862 15.201
CAT 7.288 11.341 18.084

10 HOAT 6.956 10.138 14.193
SOAT 6.858 9.796 13.516
FOAT 6.894 9.879 13.644

CAT 7.282 11.355 16.879

Beam HOAT 6.945 10.130 13.660
SOAT 6.847 9.788 12.947

FOAT 6.883 9.871 13.077
CAT 7.269 11.342 16.450

Table 5. (b) Effect of shallowness of symmetric cross-ply (0/90/0)
laminated arch on the dimensionless fundamental frequency, @,

Lih=10

R/L Theory H-H H-C cC
5 HOAT 13.586 16.505 21.670
SOAT 14.121 17.187 22.382

FOAT 13.642 16.240 21.151
CAT 17.597 27.381 40.839

10 HOAT 13.607 16.575 20.221
SOAT 14.142 17.263 20.929
FOAT 13.663 16.311 19.599
CAT 17.624 27.490 40.160
Beam HOAT 13.614 16.599 19.712
SOAT 14.149 17.288 20.419

FOAT 13.670 16.335 19.051

CAT 17.632 27.527 39.931

1227
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Fig. 1. Effect of shallowness of the arch on the centre deflection of a three-layered (0/90/0) clamped—
clamped arch subjected to triangular pulse loading using HOAT.

vibration analysis where E, = 1.0 x 10° psi, p = 0.00012 1b-s?/in*. A sinusoidal distribution
of loading in spatial domain, f{x, ) = fycos(rmx/L) p(t), is used. The transverse deflection
presented in Figs 1-4 is evaluated at the centre (x = 0), where the domain of the arch is
—L{2 € x < L/j2. Four types of loading in time domain are applied :

1. Triangular pulse loading.

l—tt, 0Kty
p() =
0 t>1

2. Exponential (blast) loading.

pty=e"

3. Sine pulse loading.

4. Step pulse loading.

1 0<r<gy
p(t)={ }

0 t>f

The following parameters are used in the numerical computations
h=2in, b=1in, L=10h, R=5L, 6=660s"",  =0003s, f,=>50lb/in

where b is the width of the arch. Zero initial conditions are assumed. The shear correction
coefficient for FOAT is set equal to 5/6. The effect of shallowness of the arch on the dynamic
response is depicted in Fig. 1 for clamped—clamped end conditions. It is clear that increasing
the curvature of the arch will increase the frequency and decrease the dynamic response.
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loading.
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clamped (c) clamped—clamped cross-ply arch subjected to sine pulse loading using HOAT.
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The comparison between the four theories used in the study is shown in Fig. 2. For all
boundary conditions, the centre deflection predicted by HOAT, SOAT and FOAT are
clearly higher than those of the CAT. This is due to the fact that the CAT represents the
laminate behavior as relatively more stiff. Increasing the number of layers, for the same
total thickness, will decrease the amplitude for antisymmetric cross-ply laminated arches,
as can be seen from Fig. 3. It is interesting to see that the amplitude for symmetric cross-
ply arrangements is smaller than antisymmetric ones. The effect of orthotropicity ratio on
the dynamic response is presented in Fig. 4, increasing this ratio will increase the frequency
and decrease the response.

It has to be mentioned that the quasi-absolute validity of any strength of materials-
type theory can be ascertained by comparison with a mathematical theory of elasticity type
approach only.
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APPENDIX A

The coefficients appearing in eqn (12) are:

HOAT
e = (€28, — 0380}, €7 = 1058y, €3 =(e205—€,85)€, ¢4 =(e285—e,€7)ey,
Cs = —ejesey, € =(€265—€1€g)eq, ¢7 = e9Cq, €3 =(€10—€aC) —eycy)co,
co = —e3cy, €19 = —(escr e teges)ey, my =(egdy—exl)ey,
my = (eoly —es)eq, my =(ecl, —erfs)eq, my =(e,5;—e;1)e,,
ms = (eliz*ezil)e()a me = (e, [;—e;L)ey, m; = —Ley,
my = (f‘)‘e4m| —esMmy)co, My =(I_4~e4m2~—egm5)c(,,
myg = (I —esms —egmg)ey, e = 1/(ejeg—e€3), ¢o = 1/(escs +escs—eyy)
where

ey = A, e =B8+8E),, es=4,/R e,=5E,,
es = —305(Dss+30,Fs5) —(Ass +36,Ds5),

e =D +26,F +83H,,, e;=es+e,/R ey =05F, +5§H11,
€y = *All/’st ey = —es—28;E,/R, e, = *5§H1|-

The coefficients appearing in eqn (13) are:

SOAT
¢ & C oMy My g e, ey e 0 0 —€y 1_| fz 1-3
Cs Cs Co My Mg Mg |=|€; €3 €5 —€ €& —e, L I 1]
€7 Cg  Cy My My My €3 €5 &y —&y —€ —é€ Tz 1, I
Clo = €1afeq, € = —eyfeq, Cp = —egfeq,ciz = —eyfes, mg = —Ijes, co=1je
where

ey =Ay, ex=B,, es=Dy, es=A,/R, e =E,, e =—Ass, e;=—2B,
/ 2
es = B |/R—Ass, e =F,, eo=—4Ds;, e, =D, /[R—2Bss5, e, =—~A/R".

The coefficients appearing in eqn (14) are:

FOAT
e = (e, —e€3€5)eq, €2 = €2€,€5, 3 =(€283 —€1€6)eq,
Cf = —€,64€y, Cs =€5les, €= —eije,, ;= —egles, o= lle,,
my = (esly—exla)ey, my =(esh—eyl3)ey, my =(eifs —exl))ey,
=(e,];—e, 1 = —I/ =1/ —e3)
my = (e ly—e;h)ey, ms= les, e =l/(e;es—e3
where

/ 2
e, =4y, ex=B, es=A, /R, e, =—KAss,

es =Dy, e =B, /R—K 455, e;=

The coefficients appearing in eqn (15) are:

CAT
L= —eyfer, = —efe), 3= e ¢ =(es—ec}, s = —ex0,
m; =1Ije,, my=1TLje, my=—ILc, my=;—esm)e,
ms = (L—e;m )eo, ¢q = 1/(e;0,—e5)

where

eo=An, e2=A /R, es=—B,, e, =—A,/R’, e =2B,/R, e =—D.
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APPENDIX B

The nonzero elements of the matrix [K] in eqn (20):

HOAT

SOAT

FOAT

CAT

K(1,2) = K(2,3) = K(3.6) = K(4,7) = K(5,8) = 1,
K(6,1) =c;, K(6,3) =cs K(6,7) =cy, K(6,8) = cio
K(1,2) =c,, K(1,5) =c5, K(1,6) =cs,

K(8,2) = c,, K(8,5) =cs, K(8,6)=cs.

K(1,5) = K(2,6) = K3,7) = K(4,8) = 1,

K5, 1) =cy. KG5,6)=cy, KG5,T)=ci2 K(5.8) =cys
K(6,3) =c,, K(6,4)=c,, K(6,5) =c;,

K(1.3) =c,, K(1.8) =cs, K(1,5 =c

K(8,3) = c;, K(8,4) =c;, K(8,5) = c,.

K(1,4) = K(2,5) = K(3,6) = 1,
K4, 1) =cs, K(@4,5)=c;, K(4,6)=cs,
K(5,3)=c;, K(5.4)=c,, K63)=c, K6.4) =0,

K(1,2) = K(2,3) = K(3,5) = K(4,6) = 1,

K5, =c,. K(5.3)=c,, K(5,6) =cs, K62 =c,, K(65)=cs.

The nonzero elements of the matrix [M] in eqn (20) :

HOAT

SOAT

FOAT

CAT

M6, 1) =m,, M(®6,3) =mg, M(6,7)=my, M(6,8)=m,,

M(1,2) =m,, M(7.4)=my, M(,5)=ms,
M(8,2) =m,, M@B,4) =ms, M(®8,5)=m,.

MG, 1) =mi, M6,2)=m, M(63)=m, M(®64=m,,

M(1.2)=m,, M(1,3)=ms, M(7,4) =mq,
M@B,2) =m;, M(8,3)=m;, M(@8,4)=m,.

M@, 1) =ms, M(5.2)=m, MG53)=m, M(62)=m, M®3)=m,

M5, 1y=my, M(5,3)=m, M(5,6)=ms, M(6,2) =m,, M(64)=m,.



